一文读懂什么是机器学习人工智能

世界充满了数据——由人和计算机生成的图像、视频、电子表格、音频和文本充斥着互联网,将我们淹没在信息的海洋中。

传统上,人类分析数据以做出更明智的决策,并设法调整系统以控制数据模式的变化。然而,随着传入信息量的增加,我们理解它的能力下降,给我们带来了以下挑战:

我们如何使用所有这些数据以自动而非手动的方式推导意义?

这正是机器学习发挥作用的地方。本文将介绍:

这些预测是由机器从一组称为“训练数据”的数据中学习模式做出的,它们可以推动进一步的技术发展,从而改善人们的生活。

机器学习是一个概念,它允许计算机自动从示例和经验中学习,并在没有明确编程的情况下模仿人类的决策。

机器学习是人工智能的一个分支,使用算法和统计技术从数据中学习并从中得出模式和隐藏的见解。

现在,让我们更深入地探索机器学习的来龙去脉。

机器学习中有数以万计的算法,可以根据学习风格或所解决问题的性质进行分组。但每个机器学习算法都包含以下关键组件:

以上是机器学习算法的四个组成部分的详细分类。

描述性:系统收集历史数据,对其进行组织,然后以易于理解的方式呈现。

主要重点是掌握企业中已经发生的事情,而不是从其发现中得出推论或预测。描述性分析使用简单的数学和统计工具,例如算术、平均值和百分比,而不是预测性和规范性分析所需的复杂计算。

通过查看历史数据来分析过去的数据模式和趋势可以预测未来可能发生的事情。

规范性的分析告诉我们如何行动,而描述性分析告诉我们过去发生了什么。预测性分析则告诉我们通过从过去学习,未来可能会发生什么。但是,一旦我们对可能发生的事情有了洞察力,应该做什么呢?

英文文献阅读器,专注提高SCI阅读效率

这就是规范性分析。它帮助系统使用过去的知识对一个人可以采取的行动提出多项建议。规范性分析可以模拟场景并提供实现预期结果的途径。

ML算法的学习可以分为三个主要部分。

机器学习模型旨在从数据中学习模式并应用这些知识进行预测。问题是:模型如何进行预测?

这个过程非常基础——从输入数据(标记或未标记)中找到模式并应用它来得出结果。

机器学习模型旨在将自己做出的预测与基本事实进行比较。目标是了解它是否在朝着正确的方向学习。这决定了模型的准确性,并暗示了我们如何改进模型的训练。

该模型的最终目标是改进预测,这意味着减少已知结果与相应模型估计之间的差异。

该模型需要通过不断更新权重来更好地适应训练数据样本。该算法循环工作,评估和优化结果,更新权重,直到获得关于模型准确性的最大值。

机器学习主要包括四种类型。

在监督学习中,顾名思义,机器在指导下学习。

这是通过向计算机提供一组标记数据来完成的,以使机器了解输入的内容以及输出应该是什么。在这里,人类充当向导,为模型提供带标签的训练数据(输入-输出对),机器从中学习模式。

一旦从以前的数据集中学习了输入和输出之间的关系,机器就可以轻松地预测新数据的输出值。

我们可以在哪里使用监督学习?

答案是:在我们知道在输入数据中查看什么以及我们想要什么作为输出的情况下。

监督学习问题的主要类型包括回归和分类问题。

无监督学习的工作方式与监督学习的工作方式恰恰相反。

它使用未标记的数据——机器必须理解数据,找到隐藏的模式并做出相应的预测。

在这里,机器在独立地从数据中推导出隐藏模式后为我们提供新发现,而无需人工指定要寻找的内容。

无监督学习问题的主要类型包括聚类和关联规则分析。

强化学习涉及一个代理,该代理通过执行操作来学习在环境中的行为。

根据这些行动的结果,它会提供反馈并调整其未来的路线——对于每一个好的动作,代理都会得到积极的反馈,而对于每一个坏的动作,代理都会得到负面的反馈或惩罚。

强化学习在没有任何标记数据的情况下进行学习。由于没有标记数据,代理只能根据自己的经验进行学习。

半监督是监督和无监督学习之间的状态。

它从每个学习中获取积极的方面,即它使用较小的标记数据集来指导分类,并从较大的未标记数据集中执行无监督特征提取。

使用半监督学习的主要优点是它能够在没有足够的标记数据来训练模型时解决问题,或者当数据根本无法标记时因为人类不知道要在其中寻找什么。

如今,机器学习几乎是所有科技公司的核心,包括谷歌或 Youtube 搜索引擎等企业。

下面,汇总了一些您可能熟悉的机器学习在现实生活中的应用示例:

车辆在道路上会遇到各种各样的情况。

为了让自动驾驶汽车比人类表现更好,它们需要学习并适应不断变化的路况和其他车辆的行为。

自动驾驶汽车从传感器和摄像头收集周围环境的数据,然后对其进行解释并做出相应的反应。它使用监督学习识别周围物体,使用无监督学习识别其他车辆的模式,并最终在强化算法的帮助下采取相应的行动。

图像分析用于从图像中提取不同的信息。

它在检查制造缺陷、分析智能城市的汽车交通或像谷歌镜头这样的视觉搜索引擎等领域得到应用。

主要思想是使用深度学习技术从图像中提取特征,然后将这些特征应用于对象检测。

如今,公司使用 AI 聊天机器人来提供客户支持和销售的情况非常普遍。AI 聊天机器人通过提供 24/7 支持帮助企业处理大量客户查询,从而降低支持成本并带来额外收入和满意的客户。

AI 机器人技术使用自然语言处理 (NLP) 来处理文本、提取查询关键字并做出相应响应。

但这不仅仅是节省时间——肉眼可能看不到伪影或结节等小特征,从而导致疾病诊断延迟和错误预测。这就是为什么使用涉及神经网络的深度学习技术(可用于从图像中提取特征)具有如此大的潜力。

随着电子商务领域的扩张,我们可以观察到在线交易数量的增加和可用支付方式的多样化。不幸的是,有些人利用了这种情况。当今世界的欺诈者非常熟练,可以非常迅速地采用新技术。

在大多数情况下,任何机器学习算法性能不佳的原因都是由于欠拟合和过拟合。

让我们在训练机器学习模型的背景下分解这些术语。

欠拟合和过拟合的原因是什么?

更一般的情况包括用于训练的数据不干净并且包含大量噪声或垃圾值,或者数据的大小太小的情况。但是,还有一些更具体的原因。

让我们来看看那些。

欠拟合的发生可能是因为:

在以下情况下可能会发生过度拟合:

任何机器学习模型的准确性都与数据集的维度成正比。但它只适用于特定的阈值。

数据集的维度是指数据集中存在的属性/特征的数量。以指数方式增加维数会导致添加非必需属性,从而混淆模型,从而降低机器学习模型的准确性。

机器学习算法对低质量的训练数据很敏感。

由于数据不正确或缺失值导致数据中出现噪声,数据质量可能会受到影响。即使训练数据中相对较小的错误也会导致系统输出出现大规模错误。

当算法表现不佳时,通常是由于数据质量问题,例如数量/倾斜/噪声数据不足或描述数据的特征不足。

因此,在训练机器学习模型之前,往往需要进行数据清洗以获得高质量的数据。

每个人都需要一台速度更快、更稳定的 PC。随着时间的推移,垃圾文件、旧注册表数据和不必要的后台进程会占用资源并降低性能。幸运的是,许多工具可以让 Windows 保持平稳运行。

THE END
0.机器学习实战学习笔记AiLearning之机器学习基础总结 Logsitic回归 sigmoid阶跃函数: Tanh函数:sigmoid函数变形,且是0均值的:; 寻找最优参数的相关理论 梯度算jvzquC41yy}/lrfpuj{/exr1r1idf==255:9hl
1.什么是机器学习,机器学习概述(新手必看)什么是机器学习,机器学习概述(新手必看) 机器学习(machine learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科,简单理解,就是通过训练数据对模型进行训练,使模型掌握数据所蕴含的潜在规律,进而对新输入的数据进行准确的分类或预测,如下图所示。jvzquC41e0hjcwhjgpm/pny1xkkx1pgusc;f0qyon
2.机器学习的介绍数据分析机器学习3. 机器学习的分类 根据学习方式的不同,机器学习可以分为以下几类: 监督学习(Supervised Learning):监督学习是指模型在训练过程中,能够获得带有标签的训练数据。标签是指训练数据中每个样本对应的正确输出。通过学习带有标签的训练数据,模型可以学会如何根据输入数据预测输出结果。常见的监督学习任务包括分类和回归。 jvzquC41dnuh0lxfp0tfv8sppaeopw4ctvodnn4fgvgjn|4374684@:6
3.机器学习(深度学习)机器学习在预测和推荐系统中也有广泛的应用,如销售预测、个性化推荐等。协同过滤和基于内容的推荐是常用的技术。 制造业和物联网 物联网(IoT)在制造业中的应用越来越广泛,机器学习可用于处理和分析传感器数据,实现设备预测性维护和质量控制。 能源管理与环境保护 jvzquC41dnuh0lxfp0tfv87523e8:>=343;0c{ykenk0fnyckny03=<::2967
4.机器学习是什么?机器学习分为几类?机器学习是什么?机器学习分为几类? 随着互联网的高速发展,被收集并应用于分析的数据量呈现出爆发式增长,面对如此量级的数据,以及常见的实时利用该数据的需求,仅依靠人工处理难免力不从心,这就催生了所谓的大数据和机器学习系统。 机器学习是一门多领域的交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学 jvzquC41yy}/k}hcuv4dp8sgyu532;5264903=6252;46B<0ujznn
5.人工神经网络进化简史1949年,心理学家唐纳德·赫布在《The Organization of Behavior》论文中描述了神经元学习法则。 人工神经网络更进一步被美国神经学家 Frank Rosenblatt 所发展。他提出了可以模拟人类感知能力的机器,并称之为“感知机”(MLP)。1957年,在 Cornell 航空实验室中,他成功在IBM 704机上完成了感知机的仿真。两年后,他又jvzquC41yy}/lrfpuj{/exr1r165f96gh8682@
6.机器学习入门模型优化与部署:根据评估结果对模型进行优化,如调整模型参数、选择更合适的特征等。优化后的模型可以部署到实际应用中,为用户提供服务。 1.2 机器学习的前景 机器学习作为人工智能的核心技术,在近年来得到了迅速发展,为人类社会各个方面带来了巨大的影响和潜力。,机器学习将在很多领域发挥重要作用,为人类创造更美好的生活。 智能化 jvzquC41dnuh0lxfp0tfv8vsa6;:9>6651gsvrhng1jfvjnnu175;>:333?
7.⭐️机器学习概念步骤分类和实践此外,机器学习算法可以分为监督学习、无监督学习、半监督学习和强化学习等多种类型,这些类型各有其特点和适用场景。机器学习是人工智能 的一个关键分支,它使计算机系统能够在没有明确编程的情况下学习和进步。 二、机器学习步骤 机器学习流程通常包括以下步骤: jvzquC41dnuh0lxfp0tfv8rqncthoxqcpi5bt}neng5eg}fknu525@732;:2
8.什么是Azure机器学习?Azure 机器学习是一种用于加速和管理机器学习项目生命周期的云服务:训练和部署模型,以及管理 MLOps。jvzquC41fqit0vnetqyph}3eqo5{j6hp1c€vtn4ocenjpn2ngcxokwl1uv{ekx4yjcz.k|2on/yuwmnq
9.我是如何准备机器学习竞赛,超详细的综合指南本文旨在为初学者和专家提供一个模板,让他们能够开始学习机器学习竞赛。 从理论上学习机器学习,理解所有这些令人惊叹的算法是很意思的,但最重要的部分是实际应用这些概念。 实践活动可以加强你对概念的理解,并会向你展示仅通过理论无法达到的重大发现。 增强技能的最佳途径是参加现实世界的比赛,在那里你可以找到很多志同jvzquC41yy}/hu~ck0ipo8ftvkimg8ftv:kg;:=h;d>54=j949613@>:8
10.西安思考:“2018国际人工智能院长论坛”专家思想分享个领域。如何用数据科学和机器学习帮助进化算法做复杂优化,关键是如何把数据和其它经验知识运用到进化优化的大环境中去。”通过人脸识别、疫苗选择、生物调控网和工业生产等实例,金耀初教授介绍了将进化计算和机器学习结合的优势:“从优化的角度出发,机器学习基本可以看成是一个优化问题,进化计算可以解决机器学习方法中的不足 jvzquC41krov0nfkct/gmz0ep5jpot132?81:6430nuo
11.机器学习面试笔试知识点1.一棵决策树的生成过程分为以下3个部分 特征选择:指从训练数据中众多的特征中选择一个特征作为当前节点的分裂标准,如何选择特征有着很多不同量化评估标准,从而衍生出不同的决策树算法。 决策树生成:根据选择的特征评估标准,从上至下递归地生成子节点,直到数据集不可分则停止决策树生长。 jvzquC41fg|fnxugt0gmk‚zp0eun1jwvkerf1:886:;:
12.西北工业大学类脑计算前沿学科论坛会议通知本次论坛瞄准脑科学与类脑计算学科国际前沿,围绕我国脑科学与类脑计算战略发展需求,从脑科学与类脑计算领域关键核心技术(脑科学最新进展、类脑模型和算法、脑机交互、仿生计算、深度学习、智能计算、类脑计算芯片和软件等),全方位讨论类脑计算的研究背景、面临的挑战和可能的发展技术路线,追踪学科发展新动态。热忱欢迎jvzquC41|fny{7syrw4ff~3ep1oohx432:905@<60jzn
13.北京大学数学学院2020年秋学期我讲了一次。这门课北大数学学院的本科生和博士生反响应该还是比较好的,因为它是概率、组合、机器学习、理论计算机和统计有关的一个基础课,又比较现代,可以马上用于研究。我下学期(2022年春学期)将开设《理论机器学习》,这个是为博士生首次开设的,我现在正在找教学资料。jvzquC41yy}/ojyj0rqv0niw0et0z‚}y13976;90jvs
14.什么是模型生成器,它的工作原理是怎样的?多类分类数据分类 图像分类图像分类 文本分类文本分类 回归值预测 建议建议 预测预测 例如,将情绪归类为正面或负面的方案属于二元分类任务。 若要详细了解 ML.NET 支持的不同 ML 任务,请参阅ML.NET 中的机器学习任务。 哪个机器学习方案最适合我? 在模型生成器中,你需要选择一个方案。 方案类型取决于尝试进行的jvzquC41fqit0vnetqyph}3eqo5{j6hp1fuupny1ociikwj/nggsprsi1c{uqvq/qxksxrjy
15.字节跳动算法岗武功秘籍(上)(1)实习岗位类 【图像与多媒体算法实习】、【Data搜索部(数据挖掘)实习】、【三维视觉实习】、【自然语言处理实习】、【数据挖掘/搜索/推荐实习】、【效率工程算法实习】、【广告算法实习】、【AI Lab机器学习实习生】、【商业变现部门推荐算法】、【编解码算法工程师实习】 (2)全职岗位类 【AI Lab计算机视觉与深jvzquC41yy}/hu~ck0ipo8ftvkimg8>35