机器学习概述一如年少模样

机器学习是一门能够让编程计算机从数据中学习的计算机科学。 一个计算机程序在完成任务T之后,获得经验E,其表现效果为P,如果任务T的性能表现,也就是用以衡量的P,随着E增加而增加,那么这样计算机程序就被称为机器学习系统。

简而言之:自我完善,自我增进,自我适应。

2、为什么需要机器学习

1>自动化的升级和维护

2>解决那些算法过于复杂甚至跟本就没有已知算法的问题

3>在机器学习的过程中协助人类获得对事物的洞见

3、机器学习的问题

1>建模问题: 所谓机器学习,在形式上可这样理解:在数据对象中通过统计或推理的方法,寻找一个接受特定输入X,并给出预期输出Y的功能函数f,即Y=f(X)。

2>评估问题: 针对已知的输入,函数给出的输出(预测值)与实际输出(目标值)之间存在一定的误差,因此需要构建一个评估体系,根据误差的大小判定函数的优劣。

3>优化问题 :学习的核心在于改善性能,通过数据对算法的反复锤炼,不断提升函数预测的准确性,直至获得能够满足实际需求的最优解,这个过程就是机器学习。

4、机器学习的种类

监督学习、无监督学习、半监督学习、强化学习

1>有监督学习:用已知输出评估模型的性能。

2>无监督学习:在没有已知输出的情况下,仅仅根据输入信息的相关性,进行类别的划分。

3>半监督学习:先通过无监督学习划分类别,再根据人工标记通过有监督学习预测输出。

4>强化学习:通过对不同决策结果的奖励和惩罚,使机器学习系统在经过足够长时间的训练以后,越来越倾向于给出接近期望结果的输出。

批量学习和增量学习

1>批量学习:将学习的过程和应用的过程截然分开,用全部的训练数据训练模型,然后再在应用场景中实现预测,当预测结果不够理想时,重新回到学习过程,如此循环。

2>增量学习:将学习的过程和应用的过程统一起来,在应用的同时以增量的方式,不断学习新的内容,边训练边预测。

基于实例的学习和基于模型的学习

1>基于实例的学习:根据以往的经验,寻找与待预测输入最接近的样本,以其输出作为预测结果。-----概率论相关

2>基于模型的学习:根据以往的经验,建立用于联系输出和输入的某种数学模型,将待预测输入代入该模型,预测其结果。 输入 -> 输出 1 2 2 4 3 6 Y = 2 * X ... 9 ? -> 18  -------线性代数(数学公式)相关

5、机器学习的一般过程

1)数据处理:时间占比大,只有数据严格符合要求,模型精度才可能得到保障

1>数据收集 (数据检索、数据挖掘、爬虫)Hadoop storm hive

2>数据清洗 (随机数、插值、或直接扔掉)

2)机器学习

1>选择模型 (算法)

2>训练模型 (算法)

3>评估模型 (工具、框架、算法知识)

4>测试模型

3)业务运维

1>应用模型

2>维护模型

6、机器学习的典型应用

股价预测

推荐引擎

自然语言识别

语音识别

图像识别

人脸识别

7、机器学习的基本问题

1)回归问题:根据已知的输入和输出寻找某种性能最佳的模型,将未知输出的输入代入模型,得到连续的输出。

2)分类问题:根据已知的输入和输出寻找某种性能最佳的模型,将未知输出的输入代入模型,得到离散的输出。

THE END
0.机器学习实战学习笔记AiLearning之机器学习基础总结 Logsitic回归 sigmoid阶跃函数: Tanh函数:sigmoid函数变形,且是0均值的:; 寻找最优参数的相关理论 梯度算jvzquC41yy}/lrfpuj{/exr1r1idf==255:9hl
1.什么是机器学习,机器学习概述(新手必看)什么是机器学习,机器学习概述(新手必看) 机器学习(machine learning, ML)是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科,简单理解,就是通过训练数据对模型进行训练,使模型掌握数据所蕴含的潜在规律,进而对新输入的数据进行准确的分类或预测,如下图所示。jvzquC41e0hjcwhjgpm/pny1xkkx1pgusc;f0qyon
2.机器学习的介绍数据分析机器学习3. 机器学习的分类 根据学习方式的不同,机器学习可以分为以下几类: 监督学习(Supervised Learning):监督学习是指模型在训练过程中,能够获得带有标签的训练数据。标签是指训练数据中每个样本对应的正确输出。通过学习带有标签的训练数据,模型可以学会如何根据输入数据预测输出结果。常见的监督学习任务包括分类和回归。 jvzquC41dnuh0lxfp0tfv8sppaeopw4ctvodnn4fgvgjn|4374684@:6
3.机器学习(深度学习)机器学习在预测和推荐系统中也有广泛的应用,如销售预测、个性化推荐等。协同过滤和基于内容的推荐是常用的技术。 制造业和物联网 物联网(IoT)在制造业中的应用越来越广泛,机器学习可用于处理和分析传感器数据,实现设备预测性维护和质量控制。 能源管理与环境保护 jvzquC41dnuh0lxfp0tfv87523e8:>=343;0c{ykenk0fnyckny03=<::2967
4.机器学习是什么?机器学习分为几类?机器学习是什么?机器学习分为几类? 随着互联网的高速发展,被收集并应用于分析的数据量呈现出爆发式增长,面对如此量级的数据,以及常见的实时利用该数据的需求,仅依靠人工处理难免力不从心,这就催生了所谓的大数据和机器学习系统。 机器学习是一门多领域的交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学 jvzquC41yy}/k}hcuv4dp8sgyu532;5264903=6252;46B<0ujznn
5.人工神经网络进化简史1949年,心理学家唐纳德·赫布在《The Organization of Behavior》论文中描述了神经元学习法则。 人工神经网络更进一步被美国神经学家 Frank Rosenblatt 所发展。他提出了可以模拟人类感知能力的机器,并称之为“感知机”(MLP)。1957年,在 Cornell 航空实验室中,他成功在IBM 704机上完成了感知机的仿真。两年后,他又jvzquC41yy}/lrfpuj{/exr1r165f96gh8682@
6.机器学习入门模型优化与部署:根据评估结果对模型进行优化,如调整模型参数、选择更合适的特征等。优化后的模型可以部署到实际应用中,为用户提供服务。 1.2 机器学习的前景 机器学习作为人工智能的核心技术,在近年来得到了迅速发展,为人类社会各个方面带来了巨大的影响和潜力。,机器学习将在很多领域发挥重要作用,为人类创造更美好的生活。 智能化 jvzquC41dnuh0lxfp0tfv8vsa6;:9>6651gsvrhng1jfvjnnu175;>:333?
7.⭐️机器学习概念步骤分类和实践此外,机器学习算法可以分为监督学习、无监督学习、半监督学习和强化学习等多种类型,这些类型各有其特点和适用场景。机器学习是人工智能 的一个关键分支,它使计算机系统能够在没有明确编程的情况下学习和进步。 二、机器学习步骤 机器学习流程通常包括以下步骤: jvzquC41dnuh0lxfp0tfv8rqncthoxqcpi5bt}neng5eg}fknu525@732;:2
8.什么是Azure机器学习?Azure 机器学习是一种用于加速和管理机器学习项目生命周期的云服务:训练和部署模型,以及管理 MLOps。jvzquC41fqit0vnetqyph}3eqo5{j6hp1c€vtn4ocenjpn2ngcxokwl1uv{ekx4yjcz.k|2on/yuwmnq
9.我是如何准备机器学习竞赛,超详细的综合指南本文旨在为初学者和专家提供一个模板,让他们能够开始学习机器学习竞赛。 从理论上学习机器学习,理解所有这些令人惊叹的算法是很意思的,但最重要的部分是实际应用这些概念。 实践活动可以加强你对概念的理解,并会向你展示仅通过理论无法达到的重大发现。 增强技能的最佳途径是参加现实世界的比赛,在那里你可以找到很多志同jvzquC41yy}/hu~ck0ipo8ftvkimg8ftv:kg;:=h;d>54=j949613@>:8
10.西安思考:“2018国际人工智能院长论坛”专家思想分享个领域。如何用数据科学和机器学习帮助进化算法做复杂优化,关键是如何把数据和其它经验知识运用到进化优化的大环境中去。”通过人脸识别、疫苗选择、生物调控网和工业生产等实例,金耀初教授介绍了将进化计算和机器学习结合的优势:“从优化的角度出发,机器学习基本可以看成是一个优化问题,进化计算可以解决机器学习方法中的不足 jvzquC41krov0nfkct/gmz0ep5jpot132?81:6430nuo
11.机器学习面试笔试知识点1.一棵决策树的生成过程分为以下3个部分 特征选择:指从训练数据中众多的特征中选择一个特征作为当前节点的分裂标准,如何选择特征有着很多不同量化评估标准,从而衍生出不同的决策树算法。 决策树生成:根据选择的特征评估标准,从上至下递归地生成子节点,直到数据集不可分则停止决策树生长。 jvzquC41fg|fnxugt0gmk‚zp0eun1jwvkerf1:886:;:
12.西北工业大学类脑计算前沿学科论坛会议通知本次论坛瞄准脑科学与类脑计算学科国际前沿,围绕我国脑科学与类脑计算战略发展需求,从脑科学与类脑计算领域关键核心技术(脑科学最新进展、类脑模型和算法、脑机交互、仿生计算、深度学习、智能计算、类脑计算芯片和软件等),全方位讨论类脑计算的研究背景、面临的挑战和可能的发展技术路线,追踪学科发展新动态。热忱欢迎jvzquC41|fny{7syrw4ff~3ep1oohx432:905@<60jzn
13.北京大学数学学院2020年秋学期我讲了一次。这门课北大数学学院的本科生和博士生反响应该还是比较好的,因为它是概率、组合、机器学习、理论计算机和统计有关的一个基础课,又比较现代,可以马上用于研究。我下学期(2022年春学期)将开设《理论机器学习》,这个是为博士生首次开设的,我现在正在找教学资料。jvzquC41yy}/ojyj0rqv0niw0et0z‚}y13976;90jvs
14.什么是模型生成器,它的工作原理是怎样的?多类分类数据分类 图像分类图像分类 文本分类文本分类 回归值预测 建议建议 预测预测 例如,将情绪归类为正面或负面的方案属于二元分类任务。 若要详细了解 ML.NET 支持的不同 ML 任务,请参阅ML.NET 中的机器学习任务。 哪个机器学习方案最适合我? 在模型生成器中,你需要选择一个方案。 方案类型取决于尝试进行的jvzquC41fqit0vnetqyph}3eqo5{j6hp1fuupny1ociikwj/nggsprsi1c{uqvq/qxksxrjy
15.字节跳动算法岗武功秘籍(上)(1)实习岗位类 【图像与多媒体算法实习】、【Data搜索部(数据挖掘)实习】、【三维视觉实习】、【自然语言处理实习】、【数据挖掘/搜索/推荐实习】、【效率工程算法实习】、【广告算法实习】、【AI Lab机器学习实习生】、【商业变现部门推荐算法】、【编解码算法工程师实习】 (2)全职岗位类 【AI Lab计算机视觉与深jvzquC41yy}/hu~ck0ipo8ftvkimg8>35